Linear Algebra II

06/05/2014, Monday, 18:30-21:30

You are NOT allowed to use any type of calculators.

1 (15 pts)
Gram-Schmidt process

Consider the vector space \mathbb{R}^{3} with the inner product

$$
\langle x, y\rangle=x^{T} y .
$$

Apply the Gram-Schmidt process to transform the basis

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}
$$

into an orthonormal basis.

REQUIRED KNOWLEDGE: inner product, Gram-Schmidt process

Solution:

To apply the Gram-Schmidt process, let

$$
x_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad x_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \quad x_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and note that

$$
\begin{array}{lll}
\left\langle x_{1}, x_{1}\right\rangle=3 & \left\langle x_{1}, x_{2}\right\rangle=2 & \left\langle x_{1}, x_{3}\right\rangle=1 \\
& \left\langle x_{2}, x_{2}\right\rangle=2 & \left\langle x_{2}, x_{3}\right\rangle=1 \\
& & \left\langle x_{3}, x_{3}\right\rangle=1
\end{array}
$$

By applying the Gram-Schmidt process, we obtain:

$$
\begin{aligned}
& u_{1}=\frac{x_{1}}{\left\|x_{1}\right\|}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& u_{2}=\frac{x_{2}-p_{1}}{\left\|x_{2}-p_{1}\right\|} \\
& p_{1}=\left\langle x_{2}, u_{1}\right\rangle u_{1}=\frac{2}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& x_{2}-p_{1}=\frac{1}{3}\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right] \\
& \left\|x_{2}-p_{1}\right\|^{2}=\frac{4}{9}+\frac{1}{9}+\frac{1}{9}=\frac{2}{3} \\
& \left\|x_{2}-p_{1}\right\|=\frac{\sqrt{2}}{\sqrt{3}} \\
& u_{2}=\frac{\sqrt{3}}{\sqrt{2}}\left[\begin{array}{r}
-2 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right] \\
& u_{3}=\frac{x_{3}-p_{2}}{\left\|x_{3}-p_{2}\right\|} \\
& p_{2}=\left\langle x_{3}, u_{1}\right\rangle u_{1}+\left\langle x_{3}, u_{2}\right\rangle u_{2}=\frac{1}{3}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]+\frac{1}{6}\left[\begin{array}{r}
-2 \\
1 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \\
& x_{3}-p_{2}=\frac{1}{2}\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right] \\
& \left\|x_{3}-p_{2}\right\|^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \\
& \left\|x_{3}-p_{2}\right\|=\frac{1}{\sqrt{2}} \\
& u_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right] .
\end{aligned}
$$

Consider the matrix

$$
M=\left[\begin{array}{rrr}
1 & 1 & -1 \\
-1 & 1 & 1 \\
0 & 2 & 0
\end{array}\right]
$$

By using Cayley-Hamilton theorem, show that $M^{k}=2^{k-2} M^{2}$ for any $k \geqslant 2$.

REQUIRED KNOWLEDGE: Cayley-Hamilton theorem

SOLUTION:

Cayley-Hamilton theorem states that $p_{M}(M)=0$ where p_{M} denotes the characteristic polynomial of M, that is $p_{M}(\lambda)=\operatorname{det}(M-\lambda I)$. Note that

$$
\begin{aligned}
p_{M}(\lambda) & =\operatorname{det}(M-\lambda I)=\operatorname{det}\left(\left[\begin{array}{ccc}
1-\lambda & 1 & -1 \\
-1 & 1-\lambda & 1 \\
0 & 2 & -\lambda
\end{array}\right]\right) \\
& =-2 \operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -1 \\
-1 & 1
\end{array}\right]\right)-\lambda \operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & 1 \\
-1 & 1-\lambda
\end{array}\right]\right) \\
& =-2(1-\lambda-1)-\lambda\left((1-\lambda)^{2}+1\right)=2 \lambda-\lambda\left(\lambda^{2}-2 \lambda+2\right) \\
& =\lambda\left(2-\lambda^{2}+2 \lambda-2\right)=\lambda\left(-\lambda^{2}+2 \lambda\right)=-\lambda^{3}+2 \lambda^{2}
\end{aligned}
$$

Therefore, Cayley-Hamilton theorem implies that

$$
-M^{3}+2 M^{2}=0 \quad \Longrightarrow \quad M^{3}=2 M^{2}
$$

Note that the claim holds for $k=2$. Suppose that it holds for an integer $\ell \geqslant 2$, that is

$$
M^{\ell}=2^{\ell-2} M^{2}
$$

Multiplying by M yields

$$
M^{\ell+1}=2^{\ell-2} M^{3}=2^{\ell-2} \cdot 2 \cdot M^{2}=2^{\ell-1} M^{2}
$$

Then, it follows from induction that $M^{k}=2^{k-2} M^{2}$ for all $k \geqslant 2$.

Consider the matrix

$$
M=\left[\begin{array}{cc}
2 & 1 \\
1 & 2 \\
2 \sqrt{2} & 2 \sqrt{2}
\end{array}\right]
$$

(a) Find a singular value decomposition for M.
(b) Find the best rank 1 approximation of M.

REQUIRED KNOWLEDGE: singular value decomposition, lower rank approximations.

SOLUTION:

(3a): Note that

$$
M^{T} M=\left[\begin{array}{ll}
13 & 12 \\
12 & 13
\end{array}\right]
$$

Then, the characteristic polynomial of $M^{T} M$ can be found as

$$
\begin{aligned}
p_{M^{T} M}(\lambda) & =\operatorname{det}\left(\left[\begin{array}{cc}
13-\lambda & 12 \\
12 & 13-\lambda
\end{array}\right]\right) \\
& =(\lambda-13)^{2}-12^{2}=(\lambda-25)(\lambda-1)
\end{aligned}
$$

Then, the eigenvalues of $M^{T} M$ are given by

$$
\lambda_{1}=25 \quad \text { and } \quad \lambda_{2}=1
$$

and hence the singular values by

$$
\sigma_{1}=5 \quad \text { and } \quad \sigma_{2}=1
$$

Next, we need to diagonalize $M^{T} M$ in order to obtain the orthogonal matrix V. To do so, we first compute eigenvectors of $M^{T} M$.

For the eigenvalue $\lambda_{1}=25$, we have

$$
0=\left(M^{T} M-25 I\right) x=\left[\begin{array}{rr}
-12 & 12 \\
12 & -12
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

This results in the following (normalized) eigenvector

$$
v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

For the eigenvalue $\lambda_{2}=1$, we have

$$
0=\left(M^{T} M-9 I\right) x=\left[\begin{array}{ll}
12 & 12 \\
12 & 12
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

This results, for instance, in the following eigenvector

$$
v_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

Hence, we get

$$
V=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Note that the rank of M is equal to the number of nonzero singular values. Thus, $r=\operatorname{rank}(M)=2$. By using the formula

$$
u_{i}=\frac{1}{\sigma_{i}} M v_{i}
$$

for $i=1,2$, we obtain

$$
\begin{aligned}
& u_{1}=\frac{1}{5}\left[\begin{array}{cc}
2 & 1 \\
1 & 2 \\
2 \sqrt{2} & 2 \sqrt{2}
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\frac{1}{5 \sqrt{2}}\left[\begin{array}{c}
3 \\
3 \\
4 \sqrt{2}
\end{array}\right] \\
& u_{2}=\frac{1}{1}\left[\begin{array}{cc}
2 & 1 \\
1 & 2 \\
2 \sqrt{2} & 2 \sqrt{2}
\end{array}\right] \frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right] .
\end{aligned}
$$

The last column vector of the matrix U can be found by looking at the null space of M^{T} :

$$
\left[\begin{array}{lll}
2 & 1 & 2 \sqrt{2} \\
1 & 2 & 2 \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=0
$$

This yields (the normalized) solution

$$
u_{3}=\frac{1}{5 \sqrt{2}}\left[\begin{array}{c}
-2 \sqrt{2} \\
-2 \sqrt{2} \\
3
\end{array}\right]
$$

Finally, the SVD can be given by:

$$
\left[\begin{array}{rr}
3 & 2 \\
2 & 3 \\
2 & -2
\end{array}\right]=\left[\begin{array}{ccc}
\frac{3}{5 \sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{2}{5} \\
\frac{3}{5 \sqrt{2}} & -\frac{1}{\sqrt{2}} & -\frac{2}{5} \\
\frac{4}{5} & 0 & \frac{3}{5 \sqrt{2}}
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

(3b): The best rank 1 approximation can be obtained as follows:

$$
\tilde{M}=\left[\begin{array}{ccc}
\frac{3}{5 \sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{2}{5} \\
\frac{3}{5 \sqrt{2}} & -\frac{1}{\sqrt{2}} & -\frac{2}{5} \\
\frac{4}{5} & 0 & \frac{3}{5 \sqrt{2}}
\end{array}\right]\left[\begin{array}{ll}
5 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{\sqrt{2}} & 0 \\
\frac{3}{\sqrt{2}} & 0 \\
4 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{2} & \frac{3}{2} \\
\frac{3}{2} & \frac{3}{2} \\
2 \sqrt{2} & 2 \sqrt{2}
\end{array}\right] .
$$

Let $J \in \mathbb{R}^{n \times n}$ be a skew-symmetric matrix, that is $J+J^{T}=0$.
(a) Show that the real part of any eigenvalue of J must be zero.
(b) Show that J is singular if n is an odd number.
(c) Show that J is unitarily diagonalizable.
(d) Show that if λ is an eigenvalue of J then $\sqrt{-\lambda^{2}}$ is a singular value of J.
(e) Show that if σ is a singular value of J then $i \sigma$ is an eigenvalue of J.

REQUIRED KNOWLEDGE: eigenvalues and singular values.

SOLUTION:

(4a): Let (λ, x) be an eigenpair of J, that is

$$
J x=\lambda x
$$

Note that

$$
\lambda x^{H} x=x^{H} J x=-x^{H} J^{T} x=-\left(x^{H} J x\right)^{H}
$$

It follows from $x^{H} J x=-\left(x^{H} J x\right)^{H}$ that the real part of $x^{H} J x$ is zero. Since

$$
\lambda=\frac{x^{H} J x}{x^{H} x}
$$

and $x^{H} x$ is a positive number, the real part of λ must be zero.
(4b): On the one hand, we have

$$
\operatorname{det}(J)=\operatorname{det}\left(J^{T}\right)
$$

since determinant is invariant under transposition. On the other hand, we have

$$
\operatorname{det}(J)=\operatorname{det}\left(-J^{T}\right)=(-1)^{n} \operatorname{det}\left(J^{T}\right)
$$

since $J+J^{T}=0$. In case n is odd, the last two equations hold if and only if $\operatorname{det}(J)=0$.
$\mathbf{(4 c) : ~ A ~ m a t r i x ~} M$ is unitarily diagonalizable if and only if $M^{H} M=M M^{H}$. Since $J^{H}=J^{T}=-J$, we see that $J^{H} J=J J^{H}=-J^{2}$. As such, J is unitarily diagonalizable.
(4d): Let (λ, x) be an eigenpair of J, that is

$$
J x=\lambda x
$$

Then, we have

$$
J^{T} J x=-J^{2} x=-\lambda J x=-\lambda^{2} x
$$

In other words, $-\lambda^{2}$ is an eigenvalue of $J^{T} J$. This means that $\sqrt{-\lambda^{2}}$ is a singular value of J.
(4e): If σ is a singular value of J, then σ^{2} must be an eigenvalue of $J^{T} J=-J^{2}$. As observed in the previous subproblem, this is only possible if $\pm \sqrt{-\sigma^{2}}$ is an eigenvalue of J. Note that $\pm \sqrt{-\sigma^{2}}= \pm i \sigma$.
(a) Consider the function

$$
f(x, y, z)=-\frac{1}{4}\left(\frac{1}{x^{4}}+\frac{1}{y^{4}}+\frac{1}{y^{4}}\right)+y z-x-2 y-2 z
$$

Show that $(1,1,1)$ is a stationary point and determine whether this stationary point is local minimum/maximum or saddle point.
(b) Let

$$
M=\left[\begin{array}{ccc}
a+1 & a & 0 \\
a & a+1 & a \\
0 & a & a
\end{array}\right]
$$

where a is a real number. Determine all values of a for which M is
(i) positive definite.
(ii) negative definite.

REQUIRED KNOWLEDGE: stationary points, positive definiteness.

Solution:

(5a): In order to find the stationary points, we need the partial derivatives:

$$
f_{x}=x^{-5}-1 \quad f_{y}=y^{-5}+z-2 \text { and } \quad f_{z}=z^{-5}-3 x
$$

Then, (\bar{x}, \bar{y}) is a stationary point if and only if

$$
\begin{aligned}
& 3 \bar{x}^{2}-3 \bar{y}=0 \\
& 3 \bar{y}^{2}-3 \bar{x}=0
\end{aligned}
$$

This leads to $\bar{x}^{4}=\bar{x}$, or equivalently $\bar{x}\left(\bar{x}^{3}-1\right)=0$. Hence, we have $\bar{x}=0$ or $\bar{x}=1$ since $\bar{x}^{3}-1=(\bar{x}-1)\left(\bar{x}^{2}+\bar{x}+1\right)$. Then, the stationary points are $(\bar{x}, \bar{y})=(0,0)$ or $(\bar{x}, \bar{y})=(1,1)$. To determine the character of these points, we need the second order partial derivatives:

$$
f_{x x}=6 x, \quad f_{x y}=-3, \quad \text { and } \quad f_{y y}=6 y
$$

For the stationary point $(\bar{x}, \bar{y})=(0,0)$, we have

$$
H_{(0,0)}=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right]_{(0,0)}=\left[\begin{array}{rr}
0 & -3 \\
-3 & 0
\end{array}\right]
$$

Note that the characteristic polynomial of the Hessian matrix $H_{(0,0)}$ is given by $\lambda^{2}-9$. Hence, it has one positive $\left(\lambda_{1}=3\right)$ and one negative eigenvalue $\left(\lambda_{2}=-3\right)$. Therefore, $H_{(0,0)}$ is indefinite and the stationary point $(\bar{x}, \bar{y})=(0,0)$ is a saddle point.

For the stationary point $(\bar{x}, \bar{y})=(1,1)$, we have

$$
H_{(1,1)}=\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right]_{(1,1)}=\left[\begin{array}{rr}
6 & -3 \\
-3 & 6
\end{array}\right]
$$

Note that the characteristic polynomial of the Hessian matrix $H_{(1,1)}$ is given by $(\lambda-6)^{2}-9$. Hence, it has two positive eigenvalues $\lambda_{1}=9$ and $\lambda_{2}=3$. This means that $H_{(1,1)}$ is positive definite. Consequently, stationary point $(\bar{x}, \bar{y})=(1,1)$ corresponds to a local minimum.
(5b): A symmetric matrix is positive definite if and only if all its leading principal minors are positive. Note that the leading principal minors of M are given by:
$\operatorname{det}(a), \quad \operatorname{det}\left(\left[\begin{array}{rr}a & -a \\ -a & b\end{array}\right]\right)=a b-a^{2}, \quad$ and $\quad \operatorname{det}\left(\left[\begin{array}{rrr}a & -a & 0 \\ -a & b & a \\ 0 & a & a\end{array}\right]\right)=a\left(a b-a^{2}\right)-a^{3}=a^{2} b-2 a^{3}$.
Then, the matrix M is positive definite if and only if

$$
a>0, \quad a b-a^{2}>0, \quad \text { and } \quad a^{2} b-2 a^{3}>0
$$

This is, however, equivalent to saying that

$$
a>0, \quad b-a>0, \quad \text { and } \quad b-2 a>0
$$

Note that the inequality in the middle is implied by the last one. Hence, we can conclude that the matrix M is positive definite if and only if

$$
a>0 \quad \text { and } \quad b>2 a .
$$

Consider the matrix

$$
\left[\begin{array}{rrr}
0 & 0 & -1 \\
-2 & 1 & -1 \\
1 & 0 & 2
\end{array}\right] .
$$

(a) Find its eigenvalues.
(b) Is it diagonalizable? Why?
(c) Put it into the Jordan canonical form.

REQUIRED KNOWLEDGE: eigenvalues/vectors, Jordan canonical form, diagonalization.

SOLUTION:
(6a): Note that

$$
\begin{aligned}
\operatorname{det}\left(\left[\begin{array}{ccc}
-\lambda & 0 & -1 \\
-2 & 1-\lambda & -1 \\
1 & 0 & 2-\lambda
\end{array}\right]\right) & =-\lambda \operatorname{det}\left(\left[\begin{array}{cc}
1-\lambda & -1 \\
0 & 2-\lambda
\end{array}\right]\right)-\operatorname{det}\left(\left[\begin{array}{cc}
-2 & 1-\lambda \\
1 & 0
\end{array}\right]\right) \\
& =-\lambda(1-\lambda)(2-\lambda)+(1-\lambda) \\
& =(1-\lambda)\left(-2 \lambda+\lambda^{2}+1\right)=(1-\lambda)^{3}
\end{aligned}
$$

Hence, we have $\lambda_{1,2,3}=1$.
(6b): It is diagonalizable if and only if it has 3 linearly independent eigenvectors. To find the eigenvectors, we need to solve the equation:

$$
\left[\begin{array}{rrr}
-1 & 0 & -1 \\
-2 & 0 & -1 \\
1 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=0
$$

This leads to $x_{1}=x_{3}=0$. Thus, eigenvectors must be of the form

$$
x=\alpha\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

This means that we can find only one linearly independent eigenvector. Therefore, the matrix is not diagonalizable.
(6c): Since there is only one linearly independent eigenvector, Jordan canonical form consists of one block. Note that

$$
(A-I)^{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad(A-I)^{3}=0
$$

Next, we check if

$$
(A-I)^{2} v=x
$$

has a solution where x is an eigenvector. Note that

$$
(A-I)^{2} v=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
v_{1}+v_{3} \\
0
\end{array}\right]
$$

Hence, we have

$$
(A-I)^{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

This means that

$$
\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],(A-I)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],(A-I)^{2}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\}=\left\{\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right\}
$$

would generate a cyclic subspace. Then, we have

$$
\left[\begin{array}{rrr}
0 & 0 & -1 \\
-2 & 1 & -1 \\
1 & 0 & 2
\end{array}\right] \underbrace{\left[\begin{array}{rrr}
0 & -1 & 0 \\
1 & -1 & 0 \\
0 & 1 & 1
\end{array}\right]}_{T}=\underbrace{\left[\begin{array}{rrr}
0 & -1 & 0 \\
1 & -1 & 0 \\
0 & 1 & 1
\end{array}\right]}_{T} \underbrace{\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]}_{J} .
$$

